Local and uniform moduli of continuity of chi–square processes

نویسندگان

چکیده

Let {ηi(t),t∈[0,1]}i=1k be independent copies of η={η(t),t∈[0,1]}, a mean zero continuous Gaussian process. Yk:=Yk(t)= ∑i=1kηi2(t),t∈[0,1]. This paper shows how exact local (at 0) and uniform moduli continuity (on [0,1]) Yk can obtained from the η.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L moduli of continuity of Gaussian processes and local times of symmetric Lévy processes

Let X = {X(t), t ∈ R+} be a real valued symmetric Lévy process with continuous local times {Lt , (t, x) ∈ R+ × R} and characteristic function EeiλX(t) = e−tψ(λ). Let σ 0(x− y) = 4 π ∞ ∫ 0 sin λ(x−y) 2 ψ(λ) dλ. If σ2 0(h) is concave, and satisfies some addtional very weak regularity conditions, then for any p ≥ 1, and all t ∈ R+

متن کامل

Lp moduli of continuity of Gaussian processes and local times of symmetric Levy processes

Let X = {X(t), t ∈ R+} be a real-valued symmetric Lévy process with continuous local times {L x t , (t, x) ∈ R+ × R} and characteristic function Ee iλX(t) = e −tψ(λ). Let σ 2 0 (x − y) = 4 π ∞ 0 sin 2 (λ(x − y)/2) ψ(λ) dλ. If σ 2 0 (h) is concave, and satisfies some additional very weak regularity conditions, then for any p ≥ 1, and all t ∈ R+, lim h↓0 b a L x+h t − L x t σ0(h) p dx = 2 p/2 E|η...

متن کامل

Moduli of Continuity of Local Times of Strongly Symmetric Markov Processes via Gaussian Processes

1. Introduction. In this paper we show that the moduli of continuity of the local times

متن کامل

A CLT for the L moduli of continuity of local times of Lévy processes

Let X = {Xt, t ∈ R+} be a symmetric Lévy process with local time {Lt ; (x, t) ∈ R1 × R1 +}. When the Lévy exponent ψ(λ) is regularly varying at infinity with index 1 < β ≤ 2 and satisfies some additional regularity conditions √ hψ2(1/h) {∫ (L 1 − L1) dx− E (∫ (L 1 − L1) dx )} L =⇒ (8cβ,1) η (∫ (L1) 2 dx )1/2 , as h → 0, where η is a normal random variable with mean zero and variance one that is...

متن کامل

CLT for L moduli of continuity of Gaussian processes

Let G = {G(x), x ∈ R1} be a mean zero Gaussian processes with stationary increments and set σ2(|x − y|) = E(G(x) − G(y))2. Let f be a symmetric function with Ef(η) < ∞, where η = N(0, 1). When σ2(s) is concave or when σ2(s) = sr, 1 < r ≤ 3/2 lim h↓0 ∫ b a f ( G(x+h)−G(x) σ(h) ) dx− (b− a)Ef(η) √ Φ(h, σ(h), f, a, b) law = N(0, 1) where Φ(h, σ(h), f, a, b) is the variance of the numerator. This r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2022

ISSN: ['1083-589X']

DOI: https://doi.org/10.1214/22-ecp471